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Fractal encoding in a chaotic neural network
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We analyze a model of a chaotic neural network consisting of three neurons, namely a chaotically forcing
neuron and two neurons comprizing a stable response system with a contraction mapping property, for digital
encoding with chaotic dynamics. We show that dynamics of the chaotically forcing neuron is embedded in the
form of a code sequence on a fractal attractor of the two-neuron response system. We consider the relation
between the state transition of the chaotically forcing neuron and the hierarchical fractal structure on the
attractor in the state space of the contracting system. We also report hardware implementation of the presented
model with an analog electronic circuit to investigate the fractal attractor of the chaotic neural network as a
realistic system.
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[. INTRODUCTION to improve memories with a very high storage capacity and
robustness against noise. Although the transfomation of the
There are many studies on the relations between chaggoposed system is nonlinear rather than affine, and it may
and fractald1—-6]. Rossleret al. [7] reported some models not be completely invertible, a kind of coding of information
representing chaos-driven contraction mapping. Their papgpay also be possiblf9,17]. We also implement the hard-
describes a hierarchy of models exhibiting fractal attractorgvare to clarify the dynamics of the system in a real elec-
including strange nonchaotic attractors found by Grebogfronic circuit. The circuit consists of electronic chaotic neu-
etal. and singular-continuous nowhere-differentiable 0N models[20], connection weights, and comparators for
(SCND) attractors, too. Tsudg], and Tsuda and Yamagu- (e hard-limit functions. del for th _ _
chi [9] have also found the SCND attractor in a neural sys-. In Sec;. I, wetﬁroposde Ia mo t('a or T eSpresltlalnt mvelstlga—
tem consisting of chaotic neuron models proposed by Aihar%?n’ containing the model equations. In Sec. 11, we ¢ apfy
et al. [10]. Their study shows that a Cantor-like attractor is '€ relation between the structure of the code and the hierar-

observed on a cross section with respect to an output of th(éhlcal structure of a fractal attractor, and we also discuss the

forcing neuron in the chaotic neural network. On the other-Yapunov dimension as a dynamical feature of the network.
hand, a lot of research on the use of chaos for nonline §ect|on IV contains the hardware implementation of the sys-

digital communications, especially for the encoding of digi—dpfm and the ext?]enmentgl resfu;ts. tS(TCt'on ?j/ 'S devct)rt]ed ttct) the
tal information, has been report¢d1—-14. Based on this IScussion on the meaning of fractal encoding on the attrac-

research, we can expect that if a dynamical system has welf?" and. the possibility of its application to information
defined symbolic dynamics, the encoding of digital informa-P"0¢€sSINg-

tion is accomplished using the principle of controlling chaos

[15,16. Furthermore, Tsudf8,17], and Tsuda and Kuroda Il. THE MODEL NETWORK

[18] showed that the transition of the states of a forcing We consider the nonlinear dynamics of a type of chaotic

chaotic neuron can be hierarchically labeled on the fractalq (g network{ 10], which consists of a chaotically forcing
attractor of a chaotically forced response system. neuron and two almost linear neurons. The latter stable neu-

The purpose of the present paper is to further develop,s are forced by the former chaotic neuron through transfer
fractal symbolic encoding in a chaotically forced contractiongn-tions as shown in Fig. 1. In the present model, we use
system that exhibits fractal attractors, by modifying the ’

Tsuda-Yamaguchi modg¢B,9,17. To clarify the encoding
property, we introduce hard-limit functions, or Heaviside
functions as transfer functions from the forcing neuron to the
response system, thereby the system is converted to an IFS
(Iterated Function Systenlike model that is composed of
not affine but rather nonlinear transformations. According to
Barnsley[19], if the IFS is totally disconnected and if the Wyx

points on the attractor are distributed sparsely, it is possible
(D oy
*Email address: jkryeu@phenix.dyu.ac.kr
TEmail address: aihara@sat.t.u-tokyo.ac.jp FIG. 1. Network configuration of a chaotically forced contract-
*Email address: tsuda@math.sci.hokudai.ac.jp ing system.
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two hard-limit functions, or Heaviside functions as transfer I fa) £ (R
functions from the chaotic neuroX to the static neuron¥
and Z to encode the dynamics of the chaotic neuron. The L —he TS -
network equations are as folloy8—10]: i L M B / A
n [T s, L I [ FRES] P / | ¥
Xn+1:f1(_a12 KiXn—r+1o 1 it ' < | A 4
r=0 ' » // |
b | ! i ".' -6
n n | e LA
L e e
yn+1:f2(_a22 krzynfr'i'wyzz erZn,r ! //_IE/' s ¥l
r=0 r=0 ik Y / LR i [ ]
N /; a o . - 3
azk i
+ Wy X, Kohi(Xn-) 2 /
r=0 0.3 - I-S.
a4 g g 9 k A h A 2
n n e k] 4132 3.1 i r.'|.1 ¥} HE] 4 [
X,
Zn+1=f3< _Q'BZO kr32n7r+Wzy§_:0 krsYnfr 0 ! | 2
= = Code sequenceof M: 1 202012112...
n
+ Wy D kghz(xn_r)), 3) FIG. 2. (Color) Definition of a code sequence based on the
r=0 chaotic neuron mafplQ].
where «; is a positive parametety is the strength of the n n
external input to the neuroX, k; is a decay parameter with Zoni1=— @z krsznirJrWzyE KLyn_,
0<k;<1(i=1,2,3),w,, is the connection weight from neu- r=0 r=0
ronuto v with w,,<0, andw,,,wy,,w,,>0, and the func- n
tion f;(x) (i=1,2,3) is the following sigmoidal function:
I( ) ( ) 9sig +WZXEO kth(Xn—r)- (9)
=
f ! i=1,2,3 4
iX)=——————7, I1=1,z,9), .
() 1+e ¥e ( ) @ Then we can represent the dynamics of the network as fol-

lows:
wheree; is a steepness parameter.
The hard-limit transfer functiong;(x) (i=1,2) are de- Xps1=Ki X — aqf1(X) +1, (10)
fined as follows:

0 (x<a) Ynr1= Ko Y= aafo(Yn) + Wy f3(Z,) +wyh [ f1(Xq)],
h,(x)= 5 11
100=11 (oa), (5) (
05
H 0 (x<b) 5 In o
X)= I
2(¥)=1 4 (x=b), (6)
wherea and b are the threshold parameters assumed to be o8 g
a<b in this paper. The functionk;(x) (i=1,2) represent —
wave-shaping effect of axons producing all-or-none behav- N el o _:'f i
iors of propagating action potentiglQ]. s % % m" i
These equations can be reduced by variable transforma- " m" ""
tions [10] with defining new variablesX,,;, Y,.1, and azf HM ; "mﬁ
Z,., as follows: +\\ o1, m.
| 3
i s 0.... 1.
Xn+1=— aerO KiXn—r+1o, () 43 o4 03 a2 o1 o a1 o2
- Yo
2:0202124. Q:1202017 5:2020712
n n 011204,  1:121120 §:212020
; ; qroiz120. 7r201212
Yni1=-— 61’220 k2yn7r+WyzZO K2Zn—r B:201202.
= = Forbidden subsequences : 00, 10, 22
n
+Wyx2 krzhl(xn—r)v (8) FIG. 3. (Color) Hierarchy of codes on the fractal attractor for
r=0 =0.58.
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Zny1=keZp— a3fs(Zy) +Wzyf2(Yn) +szh2[f1(xn)](alz I

wherel =14(1—Kky), which is used to control chaotic dynam-
ics of the neurorX.

By choosinga and b in Egs. (5) and (6) in accordance
with the two critical points of the chaotic neuron mdg] of
X as shown in Fig. 2, the information from a valueXtan
be transferred and used to stimulateand Z via (h,h,)
={(0,0),(1,0),(1,1), according to the condition that the
value X is less thara, betweera andb, or more tharb. The
three subintervals divided by the two critical points in the

one-dimensional map are labeled in Fig. 2 as 0, 1, and 2. We ™

06

08 [

2t K
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use the parameter valués=0.98, k,=k;=0.8, €,=0.02, 6
€,=€3=05, a;=a,=az=1, 1=0.58, Wy,=W, =Wy,
=0.5, andw,,= —0.5 in the simulation. 14 .
0..| 1..
IIl. FRACTAL ENCODING -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 Yo.s
A. Code sequence and fractal attractor 4:022212.. 5:122201.. 0:221221..
We next consider the relation between the structure of a 6:0122712. g ;gf;gf ;2; ;gg;
code and that of an attractor. We divide the region of the 3:212220.

state in the chaotic neuron map into three subintervals anc
label the symbols 0, 1, and 2 for each one as shown in Fig. z
[17]. We then express the dynamical ser{es} as a code
sequence consisting of the symbols 0, 1, and 2. For example,
the pointM on the chaotic map in Fig. 2, which corresponds
to the point 0 on the attractor shown in Fig. 3, can be labeledhe hierarchy of the structure of the attractor corresponds to
as 1202012112 -. Figures 3—5 show the hierarchical rela- the hierarchy of the symbolic codes generated by the forcing
tion between the codes generated by the symbolic dynamidgaotic neuron.

of the forcing chaotic neuron and the structure of the attrac- There are some types of transitions among symbols,
tor, for various values of the external indutAs these figures Which cannot be generated by the dynamics of the chaotic

show, the attractors have self-similar fractal structures whergeuronX, depending on values of the external inpats well
as the internal parameters of the chaotic neur@n, «4,

and k;. For example, ate;=0.02, @;=1, k;=0.98, and

Forbidden subsequences : 00, 10

FIG. 5. Hierarchy of codes on the fractal attractor fer0.78.

Dimension gap

15[ b

-0.7 -0.6 -05 -0.4 -0.3 -0.2 -0.1 0 0.1 05 F

N . O ko=k3=0.95-
0:010021.. 2:100201.. 6:211001.. — bo=k:=0.8
1:020100.. 3:110010.. 7:200100...
4:002010.. 5:100211.. 8:201002.. -1

09 091 092 093 094 095 096 097 098 099 1

Forbidden subsequences : 12, 22 ki

FIG. 4. Hierarchy of codes on the fractal attractor fer0.29. FIG. 6. Dimension gap versus.
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FIG. 7. (Color) An overlapped fractal attractor fdg;=0.98,
k2=k3=095

| =0.58, the transitions 8:0, 0—1, and 2—2 are forbid-
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in the proposed system. However, since the response system
consists of contractive maps, that is, all the Lyapunov expo-
nents of the inverse mapping must be positive, the length of
a code sequence to be retrie(@etoded from an attractor
may not be infinite due to instability and inevitable noise.

B. Dynamic feature of the network

To consider the stability and disconnectivity of the sys-
tem, we next calculate the dimension 48,27, defined as
the difference between the Hausdorff dimension and the to-
pological dimension, as a measure of the dispersion of an
attractor. Since the Hausdorff dimension is not computable,
the Lyapunov dimension can alternatively be used for prac-
tical demands. The Lyapunov dimension of an attragtos
calculated using the following formula:

M s

A

i=1

dim, A=m+ (13

Nl

den, therefore no subsequences such as 00, 10, and 22 app@@ere ;=\,=- - - =\, are the Lyapunov exponents and
in the code sequence.
The correspondence of a symbolic code to an invariant set

has been studied, using the technique of symbolic dynamics
[21]. Hence it may be possible for a real number to have
one-to-one correspondence to each point on a fractal attractor

S&H

CK1

is determined as

m+1

m
;1 \=0, izl \;<0. (14)

S&H

CK1

yfromY toZ

FIG. 8. Circuit diagram of the
network.

S&H

CK1
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Xntl [V] processing on the fractal attractor under noisy conditions,
8 ' ' ' ' ' ' namely the stability of encoding.
fﬁ\ On the ther handz i_f the value of the dimen_sion gap is too
6k / i -KX ] large, the disconnectivity, or the non-overlapping property of
- ‘

y . the attractor is destroyed, as demonstrated in Fig. 7. Thus,
| 1 | there must be some trade off between the stability of coding
4 }\ and the total disconnectivity in determining the contraction
ratesk, andks.

IV. HARDWARE IMPLEMENTATION
iy AND EXPERIMENTAL RESULTS

A. System configuration

The circuit diagram of the system is shown in Fig. 8. The
N system consists of three neurdr&d], one chaotic, and the

4r L 7] other two almost linear, two comparators for the hard-limit
functions, and some resistors for connection weights. The
5 L L L ' s s major parameters of a neuron, the attenuation conktantd
6 4 2 0 2 4 6 8 the steepness of the nonlinear function can be adjusted as
Xn [V]
RAl
FIG. 9. Areturn map of a chaotic neuron implemented with an K; "R (15
analog electronic circuit. A2
In the present network, the topological dimension is unity o Rai RaiRas - (16
because only the forcing system is chaotic, and the response : Ras  (Rast+Ras)Ras '

system is contractive. Figure 6 shows the characteristics of

the relation between the dimension gap &pdAccording to  \ynere 6,A) ={(1X),(2Y),(32)}.

Rossleret al. [7,22], the dimension gap should be greater  the contraction rates, the slopes of the nonlinear func-

than unity for a singular-continuous nowhere-differentiablejons and the connection weights between neurons are cho-

attractor. Figure 6 implies that the valueskgfandk; must o according to the following conditions: 8:8,<1.0,

be chosen to be large enough to satisfy this condition. Tsudg g< k. < 1.0 (i=2,3), <005 =05 ([=23), 0

and Yamaguchf9] also discussed the idea that large values_,, 'W Weo 1 ’an’d—i<w <’0. ' —

of the dimension gap may be advantageous for information  **' 2" "¥% ™’ i

Zn [V] B. Experimental results
12 T T T T T

Figure 9 shows a return map for the voltage of the output
Xin the analog circuit. The data were obtainedAYD con-

or £ 1 version with 10 kHz of sampling frequency and 14 bit of
quantizing resolution. The horizontal and vertical axes rep-
8 o 1 resentX, and X, ;, respectively.
o Figure 10 shows the fractal-like structure on the observed
el 1 Y.-Z, space. The parameter valuksand ¢; were set as
EC A A follows.
af e A e ] The chaotic driving neurork;=0.98, e;=0.02; the qua-
silinear response neuronk,;=k;=0.8, e,=€3=0.5. The
ol 1 connection weights are/y,=w,,=0.5, wy,=0.5, andw,,

=—0.5 in the experiment.

- e V. DISCUSSION AND CONCLUSION
kS R
2 . o In the present study, we proposed a model of chaotic neu-
B o e & ral network for fractal encoding and analyzed the nonlinear
4, o 5 . s s 10 dynamics, by modifying the model proposed by Tsuda and

Yamaguchi[8,9]. We also implemented the proposed net-
work as a hardware system with analog discrete devices to
FIG. 10. Fractal-like structure observed on tfigZ, space in  investigate whether or not the fractal encoding is actually
an analog electronic circuit of a chaotically forced contractingrealized. The system works in bipolar mode and can not be
system. free from the noise inherent in discrete analog circuits, thus

Ya [V]
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the attractor in the experiment is slightly different in shapetor to practical information processing, e.g., coding and com-
from the simulated attractor. In spite of this deformation, thepressing digital information. In this respect, the construction
fractal attractor structure with three regions 0, 1, and 2 isof electronic integrate circuits with parameter-controllable
clearly demonstrated. We also observed by this hardware thehaotic neuron chips will be an extremely important subject
robustness of the fractal attractor for noise to a certain defor study.
gree.

In future study, the invertibility of the mapping for decod-
ing must be examined. The relation between the distance in ACKNOWLEDGMENTS
the sequences of codes and the spatial distance on the attrac-
tor should be also investigated in detail. Another problem, The authors thank A. Yamaguchi, Y. Horio, N. Ichinose,
which should be interesting from the viewpoint of engineer-H. Shiraishi, K. Fukuda, and M. Okubo for their valuable
ing, is to apply the concept of encoding on the fractal attracdiscussions and comments.
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