
PHYSICAL REVIEW E, VOLUME 64, 046202
Fractal encoding in a chaotic neural network
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We analyze a model of a chaotic neural network consisting of three neurons, namely a chaotically forcing
neuron and two neurons comprizing a stable response system with a contraction mapping property, for digital
encoding with chaotic dynamics. We show that dynamics of the chaotically forcing neuron is embedded in the
form of a code sequence on a fractal attractor of the two-neuron response system. We consider the relation
between the state transition of the chaotically forcing neuron and the hierarchical fractal structure on the
attractor in the state space of the contracting system. We also report hardware implementation of the presented
model with an analog electronic circuit to investigate the fractal attractor of the chaotic neural network as a
realistic system.
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I. INTRODUCTION

There are many studies on the relations between ch
and fractals@1–6#. Rössleret al. @7# reported some model
representing chaos-driven contraction mapping. Their pa
describes a hierarchy of models exhibiting fractal attract
including strange nonchaotic attractors found by Greb
et al. and singular-continuous nowhere-differentiab
~SCND! attractors, too. Tsuda@8#, and Tsuda and Yamagu
chi @9# have also found the SCND attractor in a neural s
tem consisting of chaotic neuron models proposed by Aih
et al. @10#. Their study shows that a Cantor-like attractor
observed on a cross section with respect to an output of
forcing neuron in the chaotic neural network. On the oth
hand, a lot of research on the use of chaos for nonlin
digital communications, especially for the encoding of di
tal information, has been reported@11–14#. Based on this
research, we can expect that if a dynamical system has w
defined symbolic dynamics, the encoding of digital inform
tion is accomplished using the principle of controlling cha
@15,16#. Furthermore, Tsuda@8,17#, and Tsuda and Kuroda
@18# showed that the transition of the states of a forc
chaotic neuron can be hierarchically labeled on the fra
attractor of a chaotically forced response system.

The purpose of the present paper is to further deve
fractal symbolic encoding in a chaotically forced contracti
system that exhibits fractal attractors, by modifying t
Tsuda-Yamaguchi model@8,9,17#. To clarify the encoding
property, we introduce hard-limit functions, or Heavisi
functions as transfer functions from the forcing neuron to
response system, thereby the system is converted to an
~Iterated Function System!-like model that is composed o
not affine but rather nonlinear transformations. According
Barnsley@19#, if the IFS is totally disconnected and if th
points on the attractor are distributed sparsely, it is poss
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to improve memories with a very high storage capacity a
robustness against noise. Although the transfomation of
proposed system is nonlinear rather than affine, and it m
not be completely invertible, a kind of coding of informatio
may also be possible@9,17#. We also implement the hard
ware to clarify the dynamics of the system in a real ele
tronic circuit. The circuit consists of electronic chaotic ne
ron models@20#, connection weights, and comparators f
the hard-limit functions.

In Sec. II, we propose a model for the present investi
tion, containing the model equations. In Sec. III, we clar
the relation between the structure of the code and the hie
chical structure of a fractal attractor, and we also discuss
Lyapunov dimension as a dynamical feature of the netwo
Section IV contains the hardware implementation of the s
tem and the experimental results. Section V is devoted to
discussion on the meaning of fractal encoding on the att
tor and the possibility of its application to informatio
processing.

II. THE MODEL NETWORK

We consider the nonlinear dynamics of a type of chao
neural network@10#, which consists of a chaotically forcing
neuron and two almost linear neurons. The latter stable n
rons are forced by the former chaotic neuron through tran
functions as shown in Fig. 1. In the present model, we

FIG. 1. Network configuration of a chaotically forced contrac
ing system.
©2001 The American Physical Society02-1
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two hard-limit functions, or Heaviside functions as trans
functions from the chaotic neuronX to the static neuronsY
and Z to encode the dynamics of the chaotic neuron. T
network equations are as follows@8–10#:

xn115 f 1S 2a1(
r 50

n

k1
r xn2r1I 0D ~1!

yn115 f 2S 2a2(
r 50

n

k2
r yn2r1wyz(

r 50

n

k2
r zn2r

1wyx(
r 50

n

k2
r h1~xn2r !D ~2!

zn115 f 3S 2a3(
r 50

n

k3
r zn2r1wzy(

r 50

n

k3
r yn2r

1wzx(
r 50

n

k3
r h2~xn2r !D , ~3!

where a i is a positive parameter,I 0 is the strength of the
external input to the neuronX, ki is a decay parameter wit
0,ki,1(i 51,2,3),wvu is the connection weight from neu
ron u to v with wzy,0, andwyz ,wyx ,wzx.0, and the func-
tion f i(x) ( i 51,2,3) is the following sigmoidal function:

f i~x!5
1

11e2x/e i
, ~ i 51,2,3!, ~4!

wheree i is a steepness parameter.
The hard-limit transfer functionshi(x) ( i 51,2) are de-

fined as follows:

h1~x!5H 0 ~x,a!

1 ~x>a!,
~5!

h2~x!5H 0 ~x,b!

1 ~x>b!,
~6!

wherea and b are the threshold parameters assumed to
a,b in this paper. The functionshi(x) ( i 51,2) represent
wave-shaping effect of axons producing all-or-none beh
iors of propagating action potentials@10#.

These equations can be reduced by variable transfor
tions @10# with defining new variablesXn11 , Yn11, and
Zn11 as follows:

Xn1152a1(
r 50

n

k1
r xn2r1I 0 , ~7!

Yn1152a2(
r 50

n

k2
r yn2r1wyz(

r 50

n

k2
r zn2r

1wyx(
r 50

n

k2
r h1~xn2r !, ~8!
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Zn1152a3(
r 50

n

k3
r zn2r1wzy(

r 50

n

k3
r yn2r

1wzx(
r 50

n

k3
r h2~xn2r !. ~9!

Then we can represent the dynamics of the network as
lows:

Xn115k1Xn2a1f 1~Xn!1I , ~10!

Yn115k2Yn2a2f 2~Yn!1wyzf 3~Zn!1wyxh1@ f 1~Xn!#,
~11!

FIG. 2. ~Color! Definition of a code sequence based on t
chaotic neuron map@10#.

FIG. 3. ~Color! Hierarchy of codes on the fractal attractor forI
50.58.
2-2
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FRACTAL ENCODING IN A CHAOTIC NEURAL NETWORK PHYSICAL REVIEW E64 046202
Zn115k3Zn2a3f 3~Zn!1wzyf 2~Yn!1wzxh2@ f 1~Xn!#,
~12!

whereI 5I 0(12k1), which is used to control chaotic dynam
ics of the neuronX.

By choosinga and b in Eqs. ~5! and ~6! in accordance
with the two critical points of the chaotic neuron map@10# of
X as shown in Fig. 2, the information from a value ofX can
be transferred and used to stimulateY and Z via (h1 ,h2)
5$(0,0),(1,0),(1,1)%, according to the condition that th
valueX is less thana, betweena andb, or more thanb. The
three subintervals divided by the two critical points in t
one-dimensional map are labeled in Fig. 2 as 0, 1, and 2.
use the parameter valuesk150.98, k25k350.8, e150.02,
e25e350.5, a15a25a351, I 50.58, wyx5wzx5wyz
50.5, andwzy520.5 in the simulation.

III. FRACTAL ENCODING

A. Code sequence and fractal attractor

We next consider the relation between the structure o
code and that of an attractor. We divide the region of
state in the chaotic neuron map into three subintervals
label the symbols 0, 1, and 2 for each one as shown in Fi
@17#. We then express the dynamical series$Xn% as a code
sequence consisting of the symbols 0, 1, and 2. For exam
the pointM on the chaotic map in Fig. 2, which correspon
to the point 0 on the attractor shown in Fig. 3, can be labe
as 1202012112•••. Figures 3–5 show the hierarchical rel
tion between the codes generated by the symbolic dynam
of the forcing chaotic neuron and the structure of the attr
tor, for various values of the external inputI. As these figures
show, the attractors have self-similar fractal structures wh

FIG. 4. Hierarchy of codes on the fractal attractor forI 50.29.
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the hierarchy of the structure of the attractor correspond
the hierarchy of the symbolic codes generated by the forc
chaotic neuron.

There are some types of transitions among symb
which cannot be generated by the dynamics of the cha
neuronX, depending on values of the external inputI as well
as the internal parameters of the chaotic neuron,e1 , a1,
and k1. For example, ate150.02, a151, k150.98, and

FIG. 5. Hierarchy of codes on the fractal attractor forI 50.78.

FIG. 6. Dimension gap versusk1.
2-3
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I 50.58, the transitions 0→0, 0→1, and 2→2 are forbid-
den, therefore no subsequences such as 00, 10, and 22 a
in the code sequence.

The correspondence of a symbolic code to an invariant
has been studied, using the technique of symbolic dynam
@21#. Hence it may be possible for a real number to ha
one-to-one correspondence to each point on a fractal attra

FIG. 7. ~Color! An overlapped fractal attractor fork150.98,
k25k350.95.
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in the proposed system. However, since the response sy
consists of contractive maps, that is, all the Lyapunov ex
nents of the inverse mapping must be positive, the length
a code sequence to be retrieved~decoded! from an attractor
may not be infinite due to instability and inevitable noise

B. Dynamic feature of the network

To consider the stability and disconnectivity of the sy
tem, we next calculate the dimension gap@8,9,22#, defined as
the difference between the Hausdorff dimension and the
pological dimension, as a measure of the dispersion of
attractor. Since the Hausdorff dimension is not computa
the Lyapunov dimension can alternatively be used for pr
tical demands. The Lyapunov dimension of an attractorA is
calculated using the following formula:

diml A5m1

(
i 51

m

l i

ulm11u
, ~13!

wherel1>l2>•••>ln are the Lyapunov exponents andm
is determined as

(
i 51

m

l i>0, (
i 51

m11

l i,0. ~14!
FIG. 8. Circuit diagram of the
network.
2-4
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FRACTAL ENCODING IN A CHAOTIC NEURAL NETWORK PHYSICAL REVIEW E64 046202
In the present network, the topological dimension is un
because only the forcing system is chaotic, and the resp
system is contractive. Figure 6 shows the characteristic
the relation between the dimension gap andk1. According to
Rössler et al. @7,22#, the dimension gap should be great
than unity for a singular-continuous nowhere-differentia
attractor. Figure 6 implies that the values ofk2 andk3 must
be chosen to be large enough to satisfy this condition. Ts
and Yamaguchi@9# also discussed the idea that large valu
of the dimension gap may be advantageous for informa

FIG. 9. A return map of a chaotic neuron implemented with
analog electronic circuit.

FIG. 10. Fractal-like structure observed on theYn-Zn space in
an analog electronic circuit of a chaotically forced contract
system.
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processing on the fractal attractor under noisy conditio
namely the stability of encoding.

On the other hand, if the value of the dimension gap is
large, the disconnectivity, or the non-overlapping property
the attractor is destroyed, as demonstrated in Fig. 7. T
there must be some trade off between the stability of cod
and the total disconnectivity in determining the contracti
ratesk2 andk3.

IV. HARDWARE IMPLEMENTATION
AND EXPERIMENTAL RESULTS

A. System configuration

The circuit diagram of the system is shown in Fig. 8. T
system consists of three neurons@20#, one chaotic, and the
other two almost linear, two comparators for the hard-lim
functions, and some resistors for connection weights. T
major parameters of a neuron, the attenuation constantki and
the steepnesse i of the nonlinear function can be adjusted

ki5
RA1

RA2
, ~15!

e i.F4H RA1

RA2
2

RA1RA3

~RA41RA6!RA5
J G21

, ~16!

where (i ,A)5$(1,X),(2,Y),(3,Z)%.
The contraction rates, the slopes of the nonlinear fu

tions, and the connection weights between neurons are
sen according to the following conditions: 0.9,k1,1.0,
0.8<ki,1.0 (i 52,3), e1,0.05, e i>0.5 (i 52,3), 0
,wyx ,wzx ,wyz,1, and21,wzy,0.

B. Experimental results

Figure 9 shows a return map for the voltage of the out
X in the analog circuit. The data were obtained byA/D con-
version with 10 kHz of sampling frequency and 14 bit
quantizing resolution. The horizontal and vertical axes r
resentXn andXn11, respectively.

Figure 10 shows the fractal-like structure on the obser
Yn-Zn space. The parameter valueski and e i were set as
follows.

The chaotic driving neuron:k150.98, e150.02; the qua-
silinear response neurons:k25k350.8, e25e350.5. The
connection weights arewyx5wzx50.5, wyz50.5, andwzy
520.5 in the experiment.

V. DISCUSSION AND CONCLUSION

In the present study, we proposed a model of chaotic n
ral network for fractal encoding and analyzed the nonlin
dynamics, by modifying the model proposed by Tsuda a
Yamaguchi@8,9#. We also implemented the proposed ne
work as a hardware system with analog discrete device
investigate whether or not the fractal encoding is actua
realized. The system works in bipolar mode and can not
free from the noise inherent in discrete analog circuits, th
2-5
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the attractor in the experiment is slightly different in sha
from the simulated attractor. In spite of this deformation,
fractal attractor structure with three regions 0, 1, and 2
clearly demonstrated. We also observed by this hardware
robustness of the fractal attractor for noise to a certain
gree.

In future study, the invertibility of the mapping for decod
ing must be examined. The relation between the distanc
the sequences of codes and the spatial distance on the a
tor should be also investigated in detail. Another proble
which should be interesting from the viewpoint of engine
ing, is to apply the concept of encoding on the fractal attr
i-

el

tt
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tor to practical information processing, e.g., coding and co
pressing digital information. In this respect, the construct
of electronic integrate circuits with parameter-controllab
chaotic neuron chips will be an extremely important subj
for study.
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